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Paranoia versus Overconfidence in Imperfect-
Information Games

AUSTIN PARKER, DANA NAU, AND V.S. SUBRAHMANIAN

Only the paranoid survive.
—Andrew Grove, Intel CEO

Play with supreme confidence, or else you’ll lose.
—Joe Paterno, college football coach

1 Introduction

In minimax game-tree search, the min part of the minimax backup rule derives from what
we will call the paranoid assumption: the assumption that the opponent will always choose
a move that minimizes our payoff and maximizes his/her payoff (or our estimate of the
payoff, if we cut off the search before reaching the end of the game). A potential criticism
of this assumption is that the opponent may not have the ability to decide accurately what
move this is. But in several decades of experience with game-tree search in chess, checkers,
and other zero-sum perfect-information games, the paranoid assumption has worked so
well that such criticisms are generally ignored.

In game-tree search algorithms for imperfect-information games, the backup rules are
more complicated. Many of them (see Section 6) involve computing a weighted average
over the opponent’s possible moves (or a Monte Carlo sample of them), where each move’s
weight is an estimate of the probability that this is the opponent’s best possible move.
Although such backup rules do not take a min at the opponent’s move, they still tacitly
encode the paranoid assumption, by assuming that the opponent will choose optimally
from the set of moves he/she is actually capable of making.

Intuitively, one might expect the paranoid assumption to be less reliable in imperfect-
information games than in perfect-information games; for without perfect information, it
may be more difficult for the opponent to judge which move is best. The purpose of this
paper is to examine whether it is better to err on the side of paranoia or on the side of
overconfidence. Our contributions are as follows:

1. Expected utility. We provide a recursive formula for the expected utility of a move
in an imperfect-information game, that explicitly includes the opponent’s strategy o.
We prove the formula’s correctness.

2. Information-set search. @ We describe a game-tree search algorithm called
information-set search that implements the above formula. We show analytically
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that with an accurate opponent model, information-set search produces optimal re-
sults.

3. Approximation algorithm. Information-set search is, of course, intractable for any
game of interest as the decision problem in an imperfect-information game is com-
plete in double exponential time [Reif 1984]. To address this intractability problem,
we provide a modified version of information-set search that computes an approxi-
mation of a move’s expected utility by combining Monte Carlo sampling of the belief
state with a limited-depth search and a static evaluation function.

4. Paranoia and overconfidence. We present two special cases of the expected-utility
formula (and hence of the algorithm) that derive from two different opponent mod-
els: the paranoid model, which assumes the opponent will always make his/her best
possible move, and the overconfident model, which assumes the opponent will make
moves at random.

5. Experimental results. We provide experimental evaluations of information-set
search in several different imperfect-information games. These include imperfect-
information versions of P-games [Pear]l 1981; Nau 1982a; Pearl 1984], N-games
[Nau 1982a], and kalah [Murray 1952]; and an imperfect-information version of
chess called kriegspiel [Li 1994; Li 1995]. Our main experimental results are:

* Information-set search outperformed HS, the best of our algorithms for
kriegspiel in [Parker, Nau, and Subrahmanian 2005].

* In all of the games, the overconfident opponent model outperformed the para-
noid model. The difference in performance became more marked when we
decreased the amount of information available to each player.

This work was influenced by Judea Pearl’s invention of P-games [Pear]l 1981; Pearl 1984],
and his suggestion of investigating backup rules other than minimax [Pearl 1984]. We also
are grateful for his encouragement of the second author’s early work on game-tree search
(e.g., [Nau 1982a; Nau 1983]).

2 Basics

Our definitions and notation are based on [Osborne and Rubinstein 1994]. We consider
games having the following characteristics: two players, finitely many moves and states,
determinism, turn taking, zero-sum utilities, imperfect information expressed via informa-
tion sets (explained in Section 2.1), and perfect recall (explained in Section 2.3). We will
let G be any such game, and a; and a» be the two players. Our techniques are generalizable
to stochastic multi-player non-zero-sum games,' but that is left for future work.

INondeterministic initial states, outcomes, and observations can be modeled by introducing an additional
player ap who makes a nondeterministic move at the start of the game and after each of the other players’ moves.
To avoid affecting the other players’ payoffs, ag’s payoff in terminal states is always 0.

64



Paranoia versus Overconfidence in Imperfect-Information Games

At each state s, let a(s) be the player to move at s, with a(s) = @ if the game is over in
s. Let M (s) be the set of available moves at s, and m/(s) be the state produced by making
move m in state s. A history is a sequence of moves h = (mq,mo,...,m;). We let s(h)
be the state produced by history h, and when clear from context, will abuse notation and
use h to represent s(h) (e.g., m(h) = m(s(h))). Histories in which the game has ended
are called ferminal. We let H be the set of all possible histories for game G.

2.1 Information Sets

Intuitively, an information set is a set of histories that are indistinguishable to a player
a;, in the sense that each history h provides a; with the same sequence of observations.
For example, suppose a; knows the entire sequence of moves that have been played so
far, except for ay’s last move. If there are two possibilities for as’s last move, then aq’s
information set includes two histories, one for each of the two moves.

In formalizing the above notion, we will not bother to give a full formal definition of an
“observation.” The only properties we need for an observation are the following:?

» We assume that each player a;’s sequence of observations is a function O;(h) of the
current history h. The rationale is that if a; and ay play some game a second time,
and if they both make the same moves that they made the first time, then they should
be able to observe the same things that they observed the first time.

» We assume that when two histories h, h’ produce the same sequence of observations,
they also produce the same set of available moves, i.e., if O;(h) = O;(h'), then
M(s(h)) = M(s(h')). The rationale for this is that if the current history is h, a;’s
observations won’t tell a; whether the history is h or i/, so a; may attempt to make a
move m that is applicable in s(h’) but not in s(h). If a; does so, then m will produce
some kind of outcome, even if the outcome is just an announcement that a; must try a
different move. Consequently, we can easily make m applicable in s(h), by defining
anew state m(s(h)) in which this outcome occurs.

* We assume that terminal histories with distinct utilities always provide distinct ob-
servations, i.e., for terminal histories h,h' € T, if U;(h) # U;(h') then O;(h) #
O;(1).

We define a;’s information set for h to be the set of all histories that give a; the same
observations that h gives, i.e., [h]; = {h' € H : O;(h') = O;(h)}. The set of all possible
information sets for a; is Z; = {[h]; : h € H}.Itis easy to show that Z; is a partition of H.

Figure 1 shows an example game tree illustrating the correspondence between informa-
tion sets and histories. In that game, player a; makes the first move, which is hidden to
player ay. Thus player as knows that the history is either (L) or (R), which is denoted by
putting a dotted box around the nodes for those histories.

2Some game-theory textbooks define information sets without even using the notion of an “observation.” They
simply let a player’s information sets be the equivalence classes of a partition over the set of possible histories.
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Each linked pair of arrows rep-
R resents a move that has two pos-

sible outcomes: one for each

! state in the information set.

Figure 1. A game tree for a two-player imperfect-information game between two players
P1 and P2 who move in alternation. The players may move either left (L) or right (R), and
their moves are hidden from each other (e.g., after P1’s first move, P2 knows that P1 has
moved, but not whether the move was L or R). Each node is labeled with its associated
history (e.g., (L) and (R) for the two children of the root node). The information set of the
player to move is indicated by a dotted box (e.g., after P1’s first move, P2’s information set

is {{L), (R)}).

2.2 Strategies

In a perfect-information game, a player a;’s strategy is a function o;(m/|s) that returns the
probability p that a; will make move m in state s. For imperfect-information games, where
a; will not always know the exact state he/she is in, o; is a function of an information set
rather than a state; hence o;(m/|I) is the probability that a; will make move m when their
information set is I. We let M (I) be the set of moves available in information set I.

If 0, is a mixed strategy, then for every information set I € Z; where it is a;’s move,
there may be more than one move m € M (I) for which o;(m|I) > 0. But if o; is a pure
strategy, then there will be a unique move m; € M (I) such that o;(m|I) = 0 Vm # m;
and o;(m;|I) = 1; and in this case we will use the notation o; () to refer to m;.

If h = {(mq,ma,...,m,) is a history, then its probability P(h) can be calculated from
the players’ strategies. Suppose a;’s and ao’s strategies are ¢; and o9. In the special case
where a; has the first move and the players move in strict alternation,

P(h‘Ol,Ug) = 01(m1|h0)02(m2|h1) . O’l(mj|h]‘_1),Ug(m]‘+1|h]‘), ey (1)

where h; = (mq,...,m;) (hg = ()). More generally,

n—1

P(hlo1,09) = H Ta(hy)(Mmjiilhy). (2)
j=0

Given 01, 02, and any information set I, the conditional probability of any h € I is the
normalized probability
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P(h|0’1,0’2)

P(h|I = .
( | a0'170'2) Z}Llejp(h/‘0'17o-2)

3

2.3 Perfect Recall

Perfect recall means that every player always remembers all the moves they’ve made — we
can’t have two histories in player a;’s information set which disagree on what player a; did
at some point in the past. One can get a more detailed explanation of perfect and imperfect
recall in perfect information games in [Osborne and Rubinstein 1994].

In a game of perfect recall, it is easy to show that if I € 7;, then all histories in I have
the same sequence of moves for a1, whence the probability of i given [ is conditionally
independent of 1. If h = (mq,ma, ..., m,), then

Ha(hj):az oa(mj1|h;)

P(h|I,01,09) = P(h|I,09) = Swer Hagnty—ay o2 (mja I17)° )

An analogous result, with the subscripts 1 and 2 interchanged, holds when I € 7.

2.4 Utility and Expected Utility
If a history h takes us to the game’s end, then h is terminal, and we let U (h) be the urility
of h for player a;. Since the game is zero-sum, it follows that as’s utility is —U (h).

If a; and a9 have strategies o1 and o2, then the expected utility for a; is

EU(01,02) = ZP(h|01,02)U(h)7 &)
heT

where T is the set of all terminal histories, and P(h|o1,02) is as in Eq. (2). Since the game
is zero-sum, it follows that as’s expected utility is —EU (o1, 02).

For the expected utility of an individual history h, there are two cases:

Case 1: History h is terminal. Then h’s expected utility is just its actual utility, i.e.,
EU(hloy,09) = EU(h) = U(h). 6)

Case 2: History h ends at a state where it is a;’s move. Then h’s expected utility is a
weighted sum of the expected utilities for each of a;’s possible moves, weighted by
the probabilities of a; making those moves:

EU(hloy,02) = Z ai(m|h) - EU(h o m|oy,02)
meM(h)

> oi(ml[h]) - EU(homloy,02), @)

meM (h)

where o denotes concatenation.

The following lemma shows that the recursive formulation in Eqgs. (6—7) matches the
notion of expected utility given in Eq. 5.

LEMMA 1. For any strategies o1 and o9, EU (()|01, 02) (the expected utility of the empty
initial history as computed via the recursive Equations 6 and 7) equals EU (o1, 03).
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Sketch of proof. This is shown by showing, by induction on the length of &, the more
general statement that

EU(h|oy,02) = > P(h'|o1,00)U(K)/P(hloy, 09), (8)
h'’€T ,h/=homy,0---0,my,

where k is one greater than the size of h and n is the size of each h’ as appropriate. The base
case occurs when h is terminal, and the inductive case assumes Eq. 8 holds for histories of
length m + 1 to show algebraically that Eq. 8 holds for histories of length m. a

The expected utility of an information set I € H is the weighted sum of the expected
utilities of its histories:

EU(I|loy,00) = Y P(h|I,01,00)EU(h|oy, 02). )
hel

COROLLARY 2. For any strategies o1 and oo, and player a;, EU([()];|o1,02) (the ex-
pected utility of the initial information set for player a;) equals EU (01, 02).

3 Finding a Strategy

We now develop the theory for a game-tree search technique that exploits an opponent
model.

3.1 Optimal Strategy
Suppose a;’s and ay’s strategies are o1 and o9, and let I be any information set for a;. Let
M*(I|o1,02) be the set of all moves in M (I) that maximize a;’s expected utility at I, i.e.,
M*(I|o1,09) = argmax EU (I o m|o1,03)
meM(I)
Vm € M(I), Y,c; P(h|I,01,05)EU(hom*|oy,05) } (10,

= e M(I
{m €MD) > e P(WII,01,02)EU (h o mloy, 03)

Since we are considering only finite games, every history has finite length. Thus by starting
at the terminal states and going backwards up the game tree, applying Eqs. (7) and (9) at
each move, one can compute a strategy o7 such that:

. 1/|M*(1,07,02)|, ifme M*(I|of,o2),
o} (m|I) = {0 ' ! (11)

, otherwise.
THEOREM 3. Let 05 be a strategy for as, and 0§ be as in Eq. (11). Then o7 is o2-optimal.

Sketch of proof. Let 7, be any oo-optimal strategy. The basic idea is to show, by induction
on the lengths of histories in an information set I, that EU (I|0],02) > EU(I|51,02).
The induction goes backwards from the end of the game: the base case is where [
contains histories of maximal length, while the inductive case assumes the inequality holds
when I contains histories of length k& + 1, and shows it holds when I contains histories
of length k. The induction suffices to show that EU([()]1]|07, 02) > EU([{)]1]61,02),
whence from Lemma 1, EU (07, 02) > EU(d1,02). O
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Computing o] is more difficult than computing an optimal strategy in a perfect-
information game. Reif [Reif 1984] has shown that the problem of finding a strategy with
a guaranteed win is doubly exponential for imperfect-information games (this corresponds
to finding o such that for all o5, o1 wins).

In the minimax game-tree search algorithms used in perfect-information games, one way
of dealing with the problem of intractability is to approximate the utility value of a state
by searching to some limited depth d, using a static evaluation function £(-) that returns
approximations of the expected utilities of the nodes at that depth, and pretending that the
values returned by &£ are the nodes’ actual utility values. In imperfect-information games
we can compute approximate values for U in a similar fashion:

EUq(hloy,02) =

E(h), ifd=0,
U(h), if h is terminal,
12)
Yment(n) 02(ml[h]2) - EUg—1(h o m|of, 02), if it’s a2’s move,
EUq—1(h o argmax,, ¢y (EUa([h 0 m]1]07, 02))), ifit’s a1’s move,
EUq(Io},02) = > P(h|I,0%,02) - EU(h|I,07,02). (13)

hel
3.2 Opponent Models

Egs. (11-12) assume that a; knows as’s strategy o, an assumption that is quite unrealis-
tic in practice. A more realistic assumption is that a; has a model of a9 that provides an
approximation of oy. For example, in perfect-information games, the well-known mini-
max formula corresponds to an opponent model in which the opponent always chooses the
move whose utility value is lowest. We now consider two opponent models for imperfect-
information games: the overconfident and paranoid models.

Overconfidence. The overconfident model assumes ao is just choosing moves at random
from a uniform distribution; i.e., it assumes as’s strategy is oa(m|l) = 1/|M(I)| for
every m € M(I), and second, that a,’s strategy is oq-optimal. If we let OUg(h) =
EUg4(h|o,02) and OU4(I) = EU4(I|o},02) be the expected utilities for histories and
information sets under these assumptions, then it follows from Eqgs. (12-13) that:

E(h), ifd=0,
U(h), if h is terminal,

OUq(h) = OUs s (hom) I, (14)
Zme]bf(h) MR 1t 1t’s as 'S move,

OUg—1(h o argmax,, ¢ () OUa([h 0o m]1)), ifit’s ar’s move,
OUa(I) = Y (/1)) - OUa(h). (15)
hel

If the algorithm searches to a limited depth (Eq. 12 with d < maxpe g |h|), we will refer

to the resulting strategy as limited-depth overconfident. If the algorithm searches to the end
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of the game (i.e., d > maxpcg |h|), we will refer to the resulting strategy as full-depth
overconfident, and in this case we will usually write OU (h) rather than OUy(h).

Paranoia. The paranoid model assumes that as will always make the worst possible move
for aq, i.e., the move that will produce the minimum expected utility over all of the histories
in a4 ’s information set. This model replaces the summation in the third line of Eq. (12) with
a minimization:

PU4(h) =
(), ifd =0,
U(h), if b is terminal, (16)
PUy—1(h o argmin,, ¢ ns(,) (ming e (p), PUa([h om]))), ifit’s az’s move,
PUy—1(h o argmax,, ¢ s p) (mingepn), PUa([hom]))), ifit’s ai’s move,
PU(I) = min PUy(h). (17)

Like we did for overconfident search, we will use the terms limited-depth and full-depth
to refer to the cases where d < maxpep |h| and d > maxpep |h|, respectively; and for a
full-depth paranoid search, we will usually write PU (h) rather than PUy(h).

In perfect-information games, PU(h) equals h’s minimax value. But in imperfect-

information games, h’s minimax value is the minimum Eq. (11) over all possible values
of o9; and consequently PU (h) may be less than h’s minimax value.

3.3 Comparison with the Minimax Theorem

The best known kinds of strategies for zero-sum games are the strategies based on the fa-
mous Minimax Theorem [von Neumann and Morgenstern 1944]. These minimax strategies
tacitly incorporate an opponent model that we will call the minimax model. The minimax
model, overconfident model, and paranoid model each correspond to differing assumptions
about as’s knowledge and competence, as we will now discuss.

Let 37 and 5 be the sets of all possible pure strategies for a; and aq, respectively. If aq
and ao use mixed strategies, then these are probability distributions P; and P over 1 and
9. During game play, aq and ay will randomly choose pure strategies o1 and oo from Py
and P». Generally they will do this piecemeal by choosing moves as the game progresses,
but game-theoretically this is equivalent to choosing the entire strategy all at once.

Paranoia: If a; uses a paranoid opponent model, this is equivalent to assuming that
as knows in advance the pure strategy oy that a; will choose from P; during the course
of the game, and that as can choose the optimal counter-strategy, i.e., a strategy Py * that
minimizes o1’s expected utility. Thus a; will want to choose a o that has the highest
possible expected utility given Py *. If there is more than one such o1, then a;’s strategy
can be any one of them or can be an arbitrary probability distribution over all of them.

Minimax: If as uses a minimax opponent model, this is equivalent to assuming that
az will know in advance what a;’s mixed strategy P; is, and that as will be competent
enough to choose the optimal counter-strategy, i.e., a mixed strategy PQP * that minimizes
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P;’s expected utility. Thus aq will want to use a mixed strategy P; that has the highest
possible expected utility given P2P L.

In perfect-information games, the minimax model is equivalent to the paranoid model.
But in imperfect-information games, the minimax model assumes a9 has less information
than the paranoid model does: the minimax model assumes that a2 knows the probability
distribution P; over a;’s possible strategies, and the paranoid model assumes that a2 knows
which strategy a; will choose from P;.

Overconfidence: If a; uses an overconfident opponent model, this equivalent to assum-
ing that ao knows nothing about (or is not competent enough to figure out) how good or
bad each move is, whence ay will use a strategy P;~ in which all moves are equally likely.
In this case, a; will want to choose a strategy o that has the highest expected utility given
P5. If there is more than one such oy, then a;’s strategy can be any one of them or can be
an arbitrary probability distribution over all of them.

In both perfect- and imperfect-information games, the overconfident model assumes as
has much less information (and/or competence) than in the minimax and paranoid models.

3.4 Handling Large Information Sets

Information sets can be quite large. When they are too large for techniques like the above
to run in a reasonable amount of time, there are several options.

Game simplification reduces the size of the information set by creating an analogous
game with smaller information sets. This technique has worked particularly well in poker
[Billings, Burch, Davidson, Holte, Schaeffer, Schauenberg, and Szafron 2003; Gilpin and
Sandholm 2006a; Gilpin and Sandholm 2006b], as it is possible to create a “simpler” game
which preserves win probabilities (within some €). However, these approaches apply only
to variants of poker, and the technique is not easily generalizable. Given an arbitrary game
G other than poker, we know of no general-purpose way of producing a simpler game
whose expected utilities accurately reflect expected utilities in G.

State aggregation was first used in the game of sprouts [Applegate, Jacobson, and
Sleator 1991], and subsequently has been used in computer programs for games such as
bridge (e.g., [Ginsberg 1999]), in which many of the histories in an information set are
similar, and hence can be reasoned about as a group rather than individually. For example,
if one of our opponents has an ace of hearts and a low heart, it usually does not matter which
low heart the opponent has: generally all low hearts will lead to an identical outcome, so we
need not consider them separately. The aggregation reduces the computational complexity
by handling whole sets of game histories in the information set at the same time. However,
just as with game simplification, such aggregation techniques are highly game dependent.
Given an arbitrary game G, we do not know of a general-purpose way to aggregate states
of G in a way that is useful for computing expected utility values in G.

Unlike the previous two techniques, statistical sampling [Corlett and Todd 1985] is
general enough to fit any imperfect-information game. It works by selecting a manageable
subset of the given, large, information set, and doing our computations based on that.

Since we are examining game playing across several imperfect-information games we
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use the third technique. Let us suppose I is an expected utility function such as OU, or
PU,. In statistical sampling we pick I’ C I and compute the value of I'(I’) in place of
I'(I). There are two basic algorithms for doing the sampling:

1. Batch: Pick a random set of histories I’ C I, and compute I'; (1) using the equa-
tions given earlier.

2. Iterative: Until the available time runs out, repeatedly pick a random h € I, com-
pute I'({h}) and aggregate that result with all previous picks.

The iterative method is preferable because it is a true anytime algorithm: it continues to
produce increasingly accurate estimates of I'(I) until no more time is available. In contrast,
the batch method requires guessing how many histories we will be able to compute in that
time, picking a subset I’ of the appropriate size, and hoping that the computation finishes
before time is up. For more on the relative advantages of iterative and batch sampling, see
[Russell and Wolfe 2005].

Statistical sampling, unlike game simplification and state aggregation, can be used for
arbitrary imperfect-information games rather than just on games that satisfy special prop-
erties. Consequently, it is what we use in our experiments in Section 5.

4 Analysis

Since paranoid and overconfident play both depend on opponent models that may be unre-
alistic, which of them is better in practice? The answer is not completely obvious. Even
in games where each player’s moves are completely hidden from the other player, it is not
hard to create games in which the paranoid strategy outplays the overconfident strategy and
vice-versa. We now give examples of games with these properties.

Figures 2 and 3, respectively, are examples of situations in which paranoid play outper-
forms overconfident play and vice versa. As in Figure 1, the games are shown in tree form
in which each dotted box represents an information set. At each leaf node, U is the payoff
for player 1. Based on these values of U, the table gives, the probabilities of moving left
(L) and right (R) at each information set in the tree, for both the overconfident and paranoid
strategies. At each leaf node, prl is the probability of reaching that node when player 1
is overconfident and player 2 is paranoid, and pr2 is the probability of reaching that node
when player 2 is overconfident and player 1 is paranoid.

In Figure 2, the paranoid strategy outperforms the overconfident strategy, because of the
differing choices the strategies will make at the information set 12:

* Suppose player 1 is overconfident and player 2 is paranoid. Then at information set
12, player 2 assumes its opponent will always choose the worst possible response.
Hence when choosing a move at 12, player 2 thinks it will lose if it chooses L2 and
will tie if it chooses R2, so it chooses R2 to avoid the anticipated loss.

» Suppose player 1 is paranoid and player 2 is overconfident. Then at information set
12, player 2 assumes its opponent is equally likely to move left or right. Hence when
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! Initial player 1 info set | Each linked pair of arrows represents
1 3 a move with two outcomes: one for
 nht S CEEEEEER each state in the information set. The
overconfident strategy evaluates such
a move by averaging the utilities of

the outcomes, whereas the paranoid

strategy takes the minimum.

=-1] | U=+l U=0 U=0 =-1 U=+l U=0 U=0
prl =0 prl =0 prl =0 prl =1/2 pr1=0 pr1 =0 pr1=0 prl=1/2
pr2=0 pr2=1/4 pr2=0 pr2=1/4 pr2=0 pr2=1/4 pr2=0 pr2 =1/4

Info set Overconfident strategy Paranoid strategy
Il PL1)=1/2 PR1)=12 | PL)=12 PR1=12
12 P@L2)=1/2 PR2)=1/2 | PL2)=0 PR2)=1
I3 P(L3)=0 PR3)=1 P(L3)=0 PR3)=1
14 P1L4)=0 PR4)=1 PL4)=0 PR4) =1

Figure 2. An imperfect-information game in which paranoid play beats overconfident play.
If an overconfident player plays against a paranoid player and each player has an equal
chance of moving first, the expected utilities are —0.25 for the overconfident player and
0.25 for the paranoid player.

choosing a move at 12, player 2 thinks that both moves have the same expected utility,
so it will choose between them at random—which is a mistake, because its paranoid
opponent will win the game by moving right in both information sets I3 and 4.

Figure 3 shows a game in which the overconfident strategy outperforms the paranoid
strategy. Again, the pertinent information set is 12:

» Suppose overconfident play is player 1 and paranoid play is player 2. Then paranoid
play, assuming the worst, believes both move L2 and R2 are losses. R2 is a loss
because the opponent may have made move R1 resulting in a forced loss for player
2 at node F, and L2 is a loss because the opponent may have made move L1 and then
may make move R4 resulting in a loss for player 2. Since there is a potential loss in
all cases, paranoid play chooses both cases with equal probability.

* When overconfident play is player 2, it makes move L2 at 12, on the theory that
the opponent was equally likely to make moves L1 and R1 and therefore giving it a
50% probability of ending up in node E, which is a forced win for player 2. Against
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Initial player 1 info set | Each linked pair of arrows represents
1 3 a move with two outcomes: one for
”””””””””” each state in the information set. The

overconfident strategy evaluates such

ffffffffffff

a move by averaging the utilities of

the outcomes, whereas the paranoid
strategy takes the minimum.

=-1 U=+l U=+1 =-1 =-1 =-1 U=+1 U=+1
prl =1/8 prl =1/8 prl =1/8 prl =1/8 prl =1/8 prl =1/8 prl =1/8 prl =1/8
pr2=1/4 pr2 =1/4 pr2=0 pr2=0 pr2=1/4 pr2=1/4 pr2=0 pr2=0
Info set Overconfident strategy Paranoid strategy
I1 PLD)=12 PR1)=12 | PLDH=12 PR1H)=12

2 PL2)=1 PR2)=0 | PL2)=12 PR2)=1/2
3 P@L3)=172 PR3)=12 | PL3)=1/2 P[R3)=1/2
4 PL4)=172 PR4)=172 | P4 =12 PR4)=1/2

Figure 3. An imperfect-information game where overconfident play beats paranoid play. If
an overconfident player plays against a paranoid player and each player has an equal chance
of moving first, the expected utilities are 0.25 for the overconfident player and —0.25 for
the paranoid player.

paranoid play as player 1, this is a good move, since paranoid play actually does
make moves L1 and R1 with 50% probability.

These two examples show that neither strategy is guaranteed to be better in all cases:
sometimes paranoid play outperforms overconfident play, and sometimes vice versa. So to
determine their relative worth, deeper analysis is necessary.

4.1 Analysis of Overconfidence Performance in Perfect Information Games

Let s be a state in a perfect-information zero-sum game. We will say that a child s’ of s
is minimax-optimal if i(s") > u(s") for every child s” of s, where u(s) is the minimax
value for the player to move at s. A minimax strategy is any strategy that will always move
to a minimax-optimal node. In the game-tree search literature, minimax strategies have
often been called “perfect play” because they produce the highest possible value against an
opponent who is also using a minimax strategy.

In perfect-information zero-sum games, PU (s) = u(s) at every state s, hence full-depth
paranoid play is a minimax strategy. Surprisingly, if the only outcomes are wins and losses
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(or equivalently, utility values of 1 and —1), full-depth overconfident play is also a minimax
strategy. To prove this result, we first need a lemma:

LEMMA 4. Let G be any finite two-player perfect-information game whose outcomes all
have utility 1 or —1. At every state s, if u(s) = 1 then OC(s) = 1, and if u(s) = —1 then
OC(s) € [-1,1).

Sketch of proof. This is proven by induction on the height of the state s under considera-
tion. The base case occurs for with terminal nodes of height O for which the lemma follows
trivially. The inductive case supposes the lemma holds for all states of height k and shows
algebraically for states s of height k£ + 1 in each of four possible cases: (1) if it is a;’s move
and p(s) = —1then OC(s) € [—1,1), (2)ifitis a;’s move and u(s) = 1then OC(s) = 1,
(3) if it is a2’s move and pu(s) = —1 then OC(s) € [—1,1), and (4) if it is a2’s move and
u(s) = 1then OC(s) = 1. Since the game allows only wins and losses (so that u(s) is 1
or —1), these are all the possibilities. O

THEOREM 5. Let G be any finite two-player perfect-information game whose outcomes
all have utility 1 or —1. At every nonterminal state s, the overconfident strategy, oo, will
move to a state s' that is minimax-optimal.

Proof. Immediate from the lemma. O

This theorem says that in head-to-head play in perfect-information games allowing only
wins or losses, the full-depth overconfident and full-depth paranoid strategies will be evenly
matched. In the experimental section, we will see this to hold in practice.

4.2 Discussion

Paranoid play. When using paranoid play a; assumes that a, has always and will always
make the worst move possible for a1, but a; does this given only a;’s information set. This
means that for any given information set, the paranoid player will find the history in the
information set that is least advantageous to itself and make moves as though that were
the game’s actual history even when the game’s actual history is any other member of the
information set. There is a certain intuitively appealing protectionism occurring here: an
opponent that happens to have made the perfect moves cannot trap the paranoid player.
However, it really is not clear exactly how well a paranoid player will do in an imperfect-
information game, for the following reasons:

* There is no reason to necessarily believe that the opponent has made those “perfect”
moves. In imperfect-information games, the opponent has different information than
the paranoid player, which may not give the opponent enough information to make
the perfect moves paranoid play expects.

* Against non-perfect players, the paranoid player may lose a lot of potentially
winnable games. The information set could contain thousands of histories in which
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a particular move m is a win; if that move is a loss on just one history, and there is
another move m’ which admits no losses (and no wins), then m will not be chosen.?

* In games such as kriegspiel, in which there are large and diverse information sets,
usually every information set will contain histories that are losses, hence paranoid
play will evaluate all of the information sets as losses. In this case, all moves will
look equally terrible to the paranoid player, and paranoid play becomes equivalent to
random play.*

We should also note the relationship paranoid play has to the “imperfection” of the
information in the game. A game with large amounts of information and small information
sets should see better play from a paranoid player than a game with large information
sets. The reason for this is that as we get more information about the actual game state,
we can be more confident that the move the paranoid player designates as “worst” is a
move the opponent can discover and make in the actual game. The extreme of this is a
perfect information game, where paranoid play has proven quite effective: it is minimax
search. But without some experimentation, it is not clear to what extent smaller amounts
of information degrade paranoid play.

Overconfident play. Overconfident play assumes that as will, with equal probability,
make all available moves regardless of what the available information tells a2 about each
move’s expected utility. The effect this has on game play depends on the extent to which
az2’s moves diverge from random play. Unfortunately for overconfidence, many interesting
imperfect-information games implicitly encourage non-random play. In these games the
overconfident player will not adequately consider the risks of its moves. The overconfident
player, acting under the theory that the opponent is unlikely to make a particular move, will
many times not protect itself from a potential loss.

However, depending on the amount of information in the imperfect-information game,
the above problem may not be as bad as it seems. For example, consider a situation where
a1, playing overconfidently, assumes the opponent is equally likely to make each of the
ten moves available in a;’s current information set. Suppose that each move is clearly the
best move in exactly one tenth of the available histories. Then, despite the fact that the
opponent is playing a deterministic strategy, random play is a good opponent model given
the information set. This sort of situation, where the model of random play is reasonable
despite it being not at all related to the opponent’s actual mixed strategy, is more likely to
occur in games where there is less information. The larger the information set, the more
likely it is that every move is best in enough histories to make that move as likely to occur
as any other. Thus in games where players have little information, there may be a slight
advantage to overconfidence.

3This argument assumes that the paranoid player examines the entire information set rather than a statistical
sample as discussed in Section 3.4. If the paranoid player examines a statistical sample of the information set,
there is a good chance that the statistical sample will not contain the history for which m is a loss. Hence in this
case, statistical sampling would actually improve the paranoid player’s play.

4We have verified this experimentally in several of the games in the following section, but omit these experi-
ments due to lack of space.

76



Paranoia versus Overconfidence in Imperfect-Information Games

Comparative performance. The above discussion suggests that (1) paranoid play should
do better in games with “large” amounts of information, and (2) overconfident play might
do better in games with “small” amounts of information. But will overconfident play do
better than paranoid play? Suppose we choose a game with small amounts of information
and play a paranoid player against an overconfident player: what should the outcome be?
Overconfident play has the advantage of probably not diverging as drastically from the
theoretically correct expected utility of a move, while paranoid play has the advantage of
actually detecting and avoiding bad situations — situations to which the overconfident player
will not give adequate weight.

Overall, it is not at all clear from our analysis how well a paranoid player and an overcon-
fident player will do relative to each other in a real imperfect-information game. Instead,
experimentation is needed.

5 Experiments

In this section we report on our experimental comparisons of overconfident versus paranoid
play in several imperfect-information games.

One of the games we used was kriegspiel, an imperfect-information version of chess [Li
1994; Li 1995; Ciancarini, DallaLibera, and Maran 1997; Sakuta and Iida 2000; Parker,
Nau, and Subrahmanian 2005; Russell and Wolfe 2005]. In kriegspiel, neither player can
observe anything about the other player’s moves, except in cases where the players directly
interact with each other. For example, if a; captures one of ay’s pieces, a2 now knows that
a1 has a piece where a2’s piece used to be. For more detail, see Section 5.2.

In addition, we created imperfect-information versions of three perfect-information
games: P-games [Pearl 1984], N-games [Nau 1982a], and a simplified version of kalah
[Murray 1952]. We did this by hiding some fraction 0 < h < 1 of each player’s moves
from the other player. We will call h the hidden factor, because it is the fraction of infor-
mation that we hide from each player: when h = 0, each player can see all of the other
player’s moves; when h = 1, neither player can see any of the other player’s moves; when
h = 0.2, each player can see 20% of the other player’s moves; and so forth.

In each experiment, we played two players head-to-head for some number of trials, and
averaged the results. Each player went first on half of the trials.

5.1 Experiments with Move-Hiding

We did experiments in move-hiding variants of simple perfect information games. These
experiments were run on 3.4 GHz Xeon processors with at least 2 GB of RAM per core.
The programs were written in OCaml. All games were 10-ply long, and each player
searched all the way to the end of the game.

Hidden-move P-game experiments. P-games were invented by Judea Pearl [Pearl 1981],
and have been used in many studies of game-tree search (e.g., [Nau 1982a; Pearl 1984]).
They are two-player zero-sum games in which the game tree has a constant branching factor
b, fixed game length d, and fixed probability P, that the first player wins at any given leaf
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Figure 4. Average scores for overconfident (OC) play against paranoid (PAR) play.

node.’> One creates a P-game by randomly assigning “win” and “loss” values to the b leaf
nodes.

We did a set of experiments with P-games with Py = 0.38, which is the value of Py most
likely to produce a nontrivial P-game [Nau 1982b]. We used depth d = 10, and varied the
branching factor b. We varied the hidden factor h from O to 1 by increments of 0.2, so that
the number of hidden moves varied from O to 10. In particular, we hid a player’s m‘® move
if [m-h| > |(m — 1) - h]. For instance, in a game where each player makes 5 moves and
the hidden factor is 0.6, then the 29, 4t* and 5* moves of both players are hidden.

For each combination of parameters, we played 2000 games: 1000 in which one of the

SHence [Pearl 1984] calls P-games (d, b, Pp)-games.

78



Paranoia versus Overconfidence in Imperfect-Information Games

players moved first, and 1000 in which the other player moved first. Thus in each of our
figures, each data point is the average of 2000 runs.

Figure 4(a) shows the results of head-to-head play between the overconfident and para-
noid strategies. These results show that in hidden-move P-games, paranoid play does
indeed perform worse than overconfident play with hidden factors greater than 0. The re-
sults also confirm theorem 5, since overconfident play and paranoid play did equally well
with hidden factor 0. From these experiments, it seems that paranoid play may not be as
effective in imperfect-information games as it is in perfect information games.

Hidden-move N-game experiments. P-games are known to have a property called game-
tree pathology that does not occur in “natural” games such as chess [Nau 1982a], and we
wanted to ascertain whether this property might have influenced our experimental results
on hidden-move P-games. N-games are similar to P-games but do not exhibit game-tree
pathology, so we did a similar set of experiments on hidden-move N-games.

An N-game is specified by a triple (d, b, Py), where d is the game length, b is the branch-
ing factor, and F, is a probability. An N-game specified by this triple has a game tree of
height d and branching factor b, and each arc in the game tree is randomly assigned a value
of +1 with probability F, or —1 otherwise. A leaf node is a win for player 1 (and a loss for
player 2) if the sum of the values on the arcs between the root and the leaf node is greater
than zero; otherwise the leaf node is a loss for player 1 (and a win for player 2).

Figure 4(b) shows our experimental results for hidden-move N-games. Just as before,
overconfident and paranoid play did equally well with hidden factor 0, and overconfident
play outperformed paranoid play with hidden factors greater than 0.

Kalah experiments. Kalah [Murray 1952] is also called mankalah, mancala, warri, and
other names. It is an ancient African game played on a board with a number of pits that
contain seeds, in which the objective is to acquire more seeds than the opponent, either by
moving them to a special pit (called a kalah) or by capturing them from the opponent’s pits.

In kalah, there are two rows of 6 pits. Flanking the rows of pits on both sides are the
larger kalahs. Players sit on opposite sides of the board with one of the rows of pits nearer
to each player. Each player owns the kalah on their left. The game starts with 6 stones in
each of the pits except the kalahs. The player moves by picking up all the stones from one
of the pits in the near row and placing one stone in each pit clockwise around the board
including their kalah but excluding the opponent’s kalah. If the last stone is placed in their
kalah, the player moves again. If the last stone is placed in an empty pit, the player moves
all stones from the opposite pit to their kalah. The game ends when the player to move has
no moves because all pits on their side are empty. At that point, all stones in pits on the
other player’s side are placed in the player to move’s kalah and the player with the most
stones wins; ties occur when both plays own the same number of stones.

Because of the computation requirements of playing a full game of kalah, our exper-
iments were on a simplified version of kalah that we call randomized kalah. The game
differs from kalah in several ways:

* We vary the number of pits on the board. This varies the branching factor.
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* To ensure a constant branching factor, we allow players to “move” from a pit that
contains no stones. These are null moves that have no effect on the board.

* We end the game after 10 ply, to ensure that the algorithms can search the entire tree.
* We eliminate the move-again rule, to ensure alternating moves by the players.

* We start with a random number of stones in each pit to ensure that at each branching
factor there will be games with non-trivial decisions.

Since randomized kalah is directly motivated by a very old game that people still play, its
game trees are arguably much less “artificial” than those of P-games or N-games.

The results of playing overconfidence versus paranoia in hidden-move versions of ran-
domized kalah are shown in Figure 4(c). The results are roughly similar to the P-game
and N-game results, in the sense that overconfidence generally outperforms paranoia; but
the results also differ from the P-game and N-game results in several ways. First, over-
confidence generally does better at high hidden factors than at low ones. Second, paranoia
does slightly better than overconfidence at hidden factor O (which does not conflict with
Theorem 5, since kalah allows ties). Third, paranoia does better than overconfidence when
the branching factor is 2 and the hidden factor is 0.2 or 0.4. These are the only results we
saw where paranoia outperformed overconfidence.

The fact that with the same branching factor, overconfidence outperforms paranoia with
hidden factor 0.6, supports the hypothesis that as the amount of information in the game
decreases, paranoid play performs worse with respect to overconfident play. The rest of the
results support that hypothesis as well: overconfidence generally increases in performance
against paranoia as the hidden factor increases.

5.2 Kriegspiel Experiments

For experimental tests in an imperfect-information game people actually play, we used
kriegspiel, an imperfect-information version of chess in which the players cannot see their
opponent’s pieces. Kriegspiel is useful for this study because (i) it is clearly a game where
each player has only a small amount of information about the current state, and (ii) due to
its relationship to chess, it is complicated enough strategically to allow for all sorts of subtle
and interesting play. A further advantage to kriegspiel is that it is played competitively by
humans even today [Li 1994; Li 1995; Ciancarini, DallaLibera, and Maran 1997].
Kriegspiel is a chess variant played with a chess board. When played in person, it re-
quires three chess kits: one for each player and one for the referee. All boards are set up
as in normal chess, but neither player is allowed to see their opponent’s or the referee’s
board. The players then move in alternation as in standard chess, keeping their moves
hidden from the other player. All player’s moves are also played by the referee on the ref-
eree’s board. Since neither player can see the referee’s board, the referee acts as a mediator,
telling the players if the move they made is legal or illegal, and giving them various other
observations about the move made. We use the ICC’s kriegspiel observations, described at
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Table 1. Average scores for overconfi- Table 2. Average scores for overconfi-
dent play against paranoid play, in 500 dent and paranoid play against HS, with
kriegspiel games using the ICC ruleset. d 95% confidence intervals. d is the search
is the search depth. depth.

Over- Paranoid d Paranoid Overconfident
confident | d=1 d=2 d=3 1| -0.066+0.02 +0.194 £ 0.038
d=1 +0.084 +0.186 +0.19 2 | +0.032£0.035 +0.122 + 0.04
d=2 +0.140 +0.120 +0.156 3 | +0.024 £0.038 +0.012 £ 0.042

d=3 +0.170 +0.278 +0.154

http://www.chessclub.com/help/Kriegspiel. Observations define the in-
formation sets. Any two histories that have the same observations at each move and all the
same moves for one of the players are in the same information set.

When played on the internet, the referee’s job can be automated by a computer program.
For instance, on the Internet Chess Club one can play kriegspiel, and there have been
thousands of kriegspiel games played on that server.

We ran our experiments on a cluster of computers runing linux, with between 900 MB
and 1.5 GB RAM available to each process. The processors were Xeons, Athlons, and
Pentiums, ranging in clockspeed from 2 GHz to 3.2 GHz. We used time controls and always
forced players in the same game to ensure the results were not biased by different hardware.
The algorithms were written in C++. The code used for overconfident and paranoid play is
the same, with the exception of the opponent model. We used a static evaluation function
that was developed to reward conservative kriegspiel play, as our experience suggests such
play is generally better. It uses position, material, protection and threats as features.

The algorithms used for kriegspiel are depth-limited versions of the paranoid and over-
confident players. To handle the immense information-set sizes in kriegspiel, we used iter-
ative statistical sampling (see Section 3.4). To get a good sample with time control requires
limiting the search depth to at most three ply. Because time controls remain constant, the
lower search depths are able to sample many more histories than the higher search depths.

Head-to-head overconfident vs. paranoid play. We did experiments comparing overcon-
fident play to paranoid play by playing the two against each other. We gave the algorithms
30 seconds per move and played each of depths one, two, and three searches against each
other. The results are in Table 1. In these results, we notice that overconfident play con-
sistently beats paranoid play, regardless of the depth of either search. This is consistent
with our earlier results for hidden-move games (Section 5.1); and, in addition, it shows
overconfident play doing better than paranoid play in a game that people actually play.

HS versus overconfidence and paranoia. We also compared overconfident and paranoid
play to the hybrid sampling (HS) algorithm from our previous work [Parker, Nau, and
Subrahmanian 2005]. Table 2 presents the results of the experiments, which show over-
confidence playing better than paranoia except in depth three search, where the results are
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inconclusive. The inconclusive results at depth three (which are an average over 500 games)
may be due to the sample sizes achieved via iterative sampling. We measured an average
of 67 histories in each sample at depth three, which might be compared to an average of
321 histories in each sample at depth two and an average of 1683 histories at depth one.
Since both algorithms use iterative sampling, it could be that at depth three, both algorithms
examine insufficient samples to do much better than play randomly.

In every case, overconfidence does better than paranoia against HS. Further, overcon-
fidence outperforms HS in every case (though sometimes without statistical significance),
suggesting that information-set search is an improvement over the techniques used in HS.

6 Related Work

There are several imperfect-information game-playing algorithms that work by treating an
imperfect-information game as if it were a collection of perfect-information games [Smith,
Nau, and Throop 1998; Ginsberg 1999; Parker, Nau, and Subrahmanian 2005]. This ap-
proach is useful in imperfect-information games such as bridge, where it is not the players’
moves that are hidden, but instead some information about the initial state of the game. The
basic idea is to choose at random a collection of states from the current information set, do
conventional minimax searches on those states as if they were the real state, then aggregate
the minimax values returned by those searches to get an approximation of the utility of the
current information set. This approach has some basic theoretical flaws [Frank and Basin
1998; Frank and Basin 2001], but has worked well in games such as bridge.

Poker-playing computer programs can be divided into two major classes. The first are
programs which attempt to approximate a Nash equilibrium. The best examples of these
are PsOpti [Billings, Burch, Davidson, Holte, Schaeffer, Schauenberg, and Szafron 2003]
and GS1 [Gilpin and Sandholm 2006b]. The algorithms use an intuitive approximation
technique to create a simplified version of the poker game that is small enough to make it
feasible to find a Nash equilibrium. The equilibrium can then be translated back into the
original game, to get an approximate Nash equilibrium for that game. These algorithms
have had much success but differ from the approach in this paper: unlike any attempt
to find a Nash equilibrium, information-set search simply tries to find the optimal strategy
against a given opponent model. The second class of poker-playing programs includes Poki
[Billings, Davidson, Schaeffer, and Szafron 2002] which uses expected value approxima-
tions and opponent modeling to estimate the value of a given move and Vexbot [Billings,
Davidson, Schauenberg, Burch, Bowling, Holte, Schaeffer, and Szafron 2004] which uses
search and adaptive opponent modeling.

The above works have focused specifically on creating successful programs for card
games (bridge and poker) in which the opponents’ moves (card plays, bets) are observable.
In these games, the hidden information is which cards went to which players when the
cards were dealt. Consequently, the search techniques are less general than information-set
search, and are not directly applicable to hidden-move games such as kriegspiel and the
other games we have considered in this paper.
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7 Conclusion

We have introduced a recursive formulation of the expected value of an information set
in an imperfect information game. We have provided analytical results showing that this
expected utility formulation plays optimally against any opponent if we have an accurate
model of the opponent’s strategy.

Since it is generally not the case that the opponent’s strategy is known, the question
then arises as to what the recursive search should assume about an opponent. We have
studied two opponent models, a “paranoid” model that assumes the opponent will choose
the moves that are best for them, hence worst for us; and an “overconfident” model that
assumes the opponent is making moves purely at random.

We have compared the overconfident and paranoid models in kriegspiel, in an imperfect-
information version of kalah, and in imperfect-information versions of P-games [Pearl
1984] and N-games [Nau 1982a]. In each of these games, the overconfident strategy consis-
tently outperformed the paranoid strategy. The overconfident strategy even outperformed
the best of the kriegspiel algorithms in [Parker, Nau, and Subrahmanian 2005].

These results suggest that the usual assumption in perfect-information game tree
search—that the opponent will choose the best move possible—is not as effective in
imperfect-information games.
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